Make Knowledge Veritable, Visible and Valuable.

The mechanism of the gut microbiota affecting the development of Alzheimer's disease and expectations on therapeutic methods

Zhiwei Ye 1# , Ruohu Li 2# , Chenyang Wang 3 , Wenjing Zhao 4 *

  • 1. The Second Clinical Medical School of Southern Medical University, Guangdong Province, China
  • 2. School of Public Health, Southern Medical University, Guangdong Province, China
  • 3. The Second Clinical Medical School of Southern Medical University, Guangdong Province, China
  • 4. Day Surgery Center, Zhujiang Hospital, Southern Medical University, Guangdong Province, China

# Zhiwei Ye, and Ruohu Li contributed equally to this work

*Correspondence: 282771918@qq.com

DOI: https://doi.org/10.55976/atm.12022112045-60

  • Received

    12 August 2022

  • Revised

    24 October 2022

  • Accepted

    31 October 2022

  • Published

    07 November 2022

Alzheimer's disease (AD) Gut microbiota Neuroinflammation Stages of AD Antibiotic

Show More

Abstract

Introduction


References
V

[1]C.A. Lane, J. Hardy, J.M. Schott. Alzheimer's disease. European Journal of Neurology. 2018;25(1): 59-70. doi:https://doi.org/10.1111/ene.13439.

[2]Lin L., Zheng L.J., Zhang L.J. Neuroinflammation, Gut Microbiome, and Alzheimer's Disease. Molecular neurobiology. 2018;55(11): 8243-8250. doi:https://doi.org/10.1007/s12035-018-0983-2.

[3]Minter M.R., Hinterleitner R., Meisel M., et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1DeltaE9 murine model of Alzheimer's disease. Scientific reports. 2017; 7(1): 1-8. doi:https://doi.org/10.1038/s41598-017-11047-w.

[4]Jessen F., Amariglio R.E., Buckley R.F., et al. The characterisation of subjective cognitive decline. The Lancet Neurology. 2020;19(3): 271-278. doi:https://doi.org/10.1016/S1474-4422(19)30368-0.

[5]Rabin L.A., Smart C.M., Amariglio R.E. Subjective Cognitive Decline in Preclinical Alzheimer's Disease. Annual review of clinical psychology. 2017;13: 369-396. doi:https://doi.org/10.1146/annurev-clinpsy-032816-045136.

[6]Petersen R.C., Caracciolo B., Brayne C., et al. Mild cognitive impairment: a concept in evolution. Journal of internal medicine. 2014;275(3): 214-228. doi:https://doi.org/10.1111/joim.12190.

[7]Jack Jr C.R., Bennett D.A., Blennow K., et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia. 2018;14(4): 535-562. doi:https://doi.org/10.101/j.jalz.2018.02.018.

[8]Sheng C., Lin L., Lin H., et al., Altered Gut Microbiota in Adults with Subjective Cognitive Decline: The SILCODE Study. Journal of Alzheimer's Disease. 2021;82(2): 513-526. doi:10.3233/JAD-210259.

[9]Duan M., Liu F., Fu H., et al. Preoperative Microbiomes and Intestinal Barrier Function Can Differentiate Prodromal Alzheimer's Disease From Normal Neurocognition in Elderly Patients Scheduled to Undergo Orthopedic Surgery. Frontiers in cellular and infection microbiology. 2021;11: 592842. doi:https://doi.org/10.3389/fcimb.2021.592842.

[10]Zhang L., Wang Y., Xiayu X., et al. Altered Gut Microbiota in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease. 2017;60(4): 1241-1257. doi:10.3233/JAD-170020.

[11]Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer's disease. Journal of Cell Biology. 2018; 217(2): 459-472. doi:https://doi.org/10.1083/jcb.201709069.

[12]Wenzel T.J., Gates E.J., Ranger A.L., et al. Short- chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia- like cells. Molecular and Cellular Neuroscience. 2020;105: 103493. doi:https://doi.org/10.1016/j. mcn.2020.103493.

[13]Li Q., Chen H., Zhang M., et al. Altered short chain fatty acid profiles induced by dietary fiber intervention regulate AMPK levels and intestinal homeostasis. Food & function. 2019;10(11): 7174-7187. doi:https://doi.org/10.1039/C9FO01465A.

[14]Liu P., Wu L., Peng G., et al. Altered microbiomes distinguish Alzheimer's disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain, behavior, and immunity. 2019;80: 633-643. doi:https://doi.org/10.1016/j.bbi.2019.05.008.

[15]Lukiw W.J. Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer's Disease. Frontiers in microbiology. 2016;7: 1544. doi:https:// doi.org/10.3389/fmicb.2016.01544

[16]Nho K., Kueider-Paisley A., MahmoudianDehkordi S., et al. Altered bile acid profile in mild cognitive impairment and Alzheimer's disease: Relationship to neuroimaging and CSF biomarkers. Alzheimer's & Dementia. 2019;15(2): 232-244. doi:https://doi. org/10.1016/j.jalz.2018.08.012.

[17]Muhammad T., Ikram M., Ullah R., et al. Hesperetin, a Citrus Flavonoid, Attenuates LPS- Induced Neuroinflammation, Apoptosis and Memory Impairments by Modulating TLR4/NF-kappaB Signaling. Nutrients. 2019;11(3): 648. doi:https://doi. org/10.3390/nu11030648.

[18]Sfera A., Gradini R., Cummings M., et al. Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease. Frontiers in neurology. 2018;9: 1062. doi:https://doi.org/10.3389/fneur.2018.01062.

[19]Nagpal R., Neth B.J., Wang S., et al. Modified Mediterranean-ketogenic diet modulates gut microbiome and short- chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019;47: 529- 542. doi:https://doi.org/10.1016/j.ebiom.2019.08.032

[20]Wu L., Han Y., Zheng Z., et al. Altered Gut Microbial Metabolites in Amnestic Mild Cognitive Impairment and Alzheimer's Disease: Signals in Host-Microbe Interplay. Nutrients. 2021;13(1): 228. doi:https://doi. org/10.3390/nu13010228.

[21]Vogt N.M., Romano K.A., Darst B.F., et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer's disease. Alzheimer's research & therapy. 2018;10(1): 1-8. doi:https://doi. org/10.1186/s13195-018-0451-2.

[22]Lukiw W.J. Gastrointestinal (GI) Tract Microbiome- Derived Neurotoxins-Potent Neuro- Inflammatory Signals From the GI Tract via the Systemic Circulation Into the Brain. Frontiers in cellular and infection microbiology. 2020;10: 22. doi:https://doi. org/10.3389/fcimb.2020.00022.

[23]Cattaneo A., Cattane N., Galluzzi S., et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of aging. 2017;49: 60-68. doi:https://doi.org/10.1016/j. neurobiolaging.2016.08.019.

[24]Dufies O., Doye A., Courjon J., et al. Escherichia coli Rho GTPase-activating toxin CNF1 mediates NLRP3 inflammasome activation via p21-activated kinases-1/2 during bacteraemia in mice. Nature microbiology. 2021;6(3): 401-412. doi:https://doi. org/10.1038/s41564-020-00832-5.

[25]Saresella M., La Rosa F., Piancone F., et al. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer's disease. Molecular neurodegeneration. 2016;11(1): 1-14. doi:https://doi.org/10.1186/s13024- 016-0088-1.

[26]Shen H., Guan Q., Zhang X., et al. New mechanism of neuroinflammation in Alzheimer's disease: The activation of NLRP3 inflammasome mediated by gut microbiota. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2020;100: 109884. doi:https://doi.org/10.1016/j.pnpbp.2020.109884.

[27]Ising C., Venegas C., Zhang S., et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575(7784): 669-673. doi:https://doi. org/10.1038/s41586-019-1769-z.

[28]Zhuang Z.Q., Shen L.L., Li W.W., et al. Gut Microbiota is Altered in Patients with Alzheimer's Disease. Journal of Alzheimer's disease. 2018;63(4): 1337-1346. doi:10.3233/JAD-180176.

[29]Zhou Y., Wang Y., Quan M., et al. Gut Microbiota Changes and Their Correlation with Cognitive and Neuropsychiatric Symptoms in Alzheimer's Disease. Journal of Alzheimer's Disease. 2021;81(2): 583-595. doi:10.3233/JAD-201497.

[30]Giordano N.P., Cian M.B., Dalebroux Z.D. Outer Membrane Lipid Secretion and the Innate Immune Response to Gram- Negative Bacteria. Infection and Immunity. 2020;88(7): e00920-19. doi:https://doi. org/10.1128/IAI.00920-19.

[31]Vogt N.M., Kerby R.L., Dill-McFarland K.A., et al. Gut microbiome alterations in Alzheimer's disease. Scientific reports. 2017;7(1): 1-11. doi:https://doi. org/10.1038/s41598-017-13601-y.

[32]Li B., He Y., Ma J., et al. Mild cognitive impairment has similar alterations as Alzheimer's disease in gut microbiota. Alzheimer's & Dementia. 2019;15(10): 1357-1366. doi:https://doi.org/10.1016/j. jalz.2019.07.002.

[33]Ling Z., Zhu M., Yan X., et al. Structural and Functional Dysbiosis of Fecal Microbiota in Chinese Patients With Alzheimer's Disease. Frontiers in Cell and Developmental Biology. 2020;8: 634069. doi:https://doi.org/10.3389/fcell.2020.634069.

[34]Calsolaro V., Edison P. Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimer's & dementia. 2016;12(6): 719- 732. doi:https://doi.org/10.1016/j.jalz.2016.02.010.

[35]Minter M.R., Taylor J.M., Crack P.J. The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease. Journal of neurochemistry. 2016;136(3): 457-474. doi:https://doi.org/10.1111/ jnc.13411.

[36]Lv W.J., Liu C., Yu L.Z., et al., Melatonin Alleviates Neuroinflammation and Metabolic Disorder in DSS- Induced Depression Rats. Oxidative medicine and cellular longevity. 2020: 1241894. doi:https://doi. org/10.1155/2020/1241894.

[37]Shukla M., Govitrapong P., Boontem P., et al. Mechanisms of Melatonin in Alleviating Alzheimer's Disease. Current neuropharmacology. 2017;15(7): 1010-1031. doi:https://doi.org/10.2174/1570159X156 66170313123454.

[38]Sorbara M.T., Littmann E.R., Fontana E., et al. Functional and Genomic Variation between Human- Derived Isolates of Lachnospiraceae Reveals Inter- and Intra-Species Diversity. Cell host & microbe. 2020;28(1): 134-146. doi:https://doi.org/10.1016/j. chom.2020.05.005.

[39]Majid N., Siddiqi M.K., Khan A.N., et al. Biophysical Elucidation of Amyloid Fibrillation Inhibition and Prevention of Secondary Nucleation by Cholic Acid: An Unexplored Function of Cholic Acid. ACS Chemical Neuroscience. 2019;10(11): 4704-4715. doi:https://doi.org/10.1021/acschemneuro.9b00482.

[40]Gao K., Mu C.L., Farzi A., et al. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Advances in Nutrition. 2020;11(3): 709-723. doi:https://doi.org/10.1093/advances/nmz127.

[41]Williams B.B., Van Benschoten A.H., Cimermancic P., et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell host & microbe. 2014;16(4): 495- 503. doi:https://doi.org/10.1016/j.chom.2014.09.001.

[42]Xiao L., Yan J., Yang T., et al. Fecal Microbiome Transplantation from Children with Autism Spectrum Disorder Modulates Tryptophan and Serotonergic Synapse Metabolism and Induces Altered Behaviors in Germ-Free Mice. MSystems. 2021;6(2): 1343-20. doi:https://doi.org/10.1128/mSystems.01343-20.

[43]Aaldijk E., Vermeiren Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer's disease: A narrative review. Ageing Research Reviews. 2022;75: 101556. doi:https://doi. org/10.1016/j.arr.2021.101556.

[44]Bonfili L., Cecarini V., Berardi S., et al. Microbiota modulation counteracts Alzheimer's disease progression influencing neuronal proteolysis and gut hormones plasma levels. Scientific reports. 2017; 7(1): 1-21. doi:https://doi.org/10.1038/s41598-017- 02587-2.

[45]Ho L., Ono K., Tsuji M., et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms. Expert review of neurotherapeutics. 2018;18(1): 83-90. doi:https://doi.org/10.1080/14737175.2018.1400909.

[46]Kobayashi Y., Sugahara H., Shimada K., et al. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Scientific reports. 2017;7(1): 1-10. doi:https://doi.org/10.1038/s41598-017-13368- 2.

[47]Kobayashi Y., Kuhara T., Oki M., et al. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo- controlled trial. Beneficial microbes. 2019;10(5): 511-520. doi:https://doi. org/10.3920/BM2018.0170.

[48]Benton D., Williams C., Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. European journal of clinical nutrition. 2007;61(3): 355-361. doi:https://doi. org/10.1038/sj.ejcn.1602546.

[49]Camfield D.A., Owen L., Scholey A.B., et al. Dairy constituents and neurocognitive health in ageing. British journal of nutrition. 2011;106(2): p. 159-174. doi:https://doi.org/10.1017/S0007114511000158.

[50]Ano Y., Ayabe T., Kutsukake T., et al. Novel lactopeptides in fermented dairy products improve memory function and cognitive decline. Neurobiology of Aging. 2018;72: 23-31. doi:https:// doi.org/10.1016/j.neurobiolaging.2018.07.016.

[51]Ano Y., Yoshino Y., Kutsukake T., et al. Tryptophan- related dipeptides in fermented dairy products suppress microglial activation and prevent cognitive decline. Aging (Albany NY). 2019;11(10): 2949-2967. doi:https://doi.org/10.18632%2Faging.101909.

[52]Rahman A., Baker P.S., Allman R.M., et al. Dietary factors and cognitive impairment in community- dwelling elderly. The Journal of Nutrition, Health & Aging. 2007;11(1): 49-54.Available from:https://www. proquest.com/openview/b4ee6457333248029849799 63315dca3/1?pq-origsite=gscholar&cbl=28850.

[53]Ozawa M., Ninomiya T., Ohara T., et al. Dietary patterns and risk of dementia in an elderly Japanese population: the Hisayama Study. The American of Clinical Nutrition. 2013;97(5): 1076-1082. doi:https:// doi.org/10.3945/ajcn.112.045575.

[54]Pistollato F., Iglesias R.C., Ruiz R., et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer's disease: A focus on human studies. Pharmacological research. 2018;131: 32-43. doi:https://doi.org/10.1016/j.phrs.2018.03.012.

[55]Tillisch K., Labus J., Kilpatrick L., et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144(7): 1394- 1401. doi:https://doi.org/10.1053/j.gastro.2013.02.04 3.

[56]Akbari E., Asemi Z., Daneshvar Kakhaki R., et al. Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer's Disease: A Randomized, Double-Blind and Controlled Trial. Frontiers in aging neuroscience. 2016;8: 256. doi:https://doi.org/10.3389/fnagi.2016.00256.

[57]Athari Nik Azm S., Djazayeri A., Safa M., et al. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in beta- amyloid (1-42) injected rats. Applied Physiology, Nutrition, and Metabolism. 2018;43(7): 718-726. doi:https://doi.org/10.1139/apnm-2017-0648.

[58]Abraham D., Feher J., Scuderi G.L., et al. Exercise and probiotics attenuate the development of Alzheimer's disease in transgenic mice: Role of microbiome. Experimental gerontology. 2019;115: 122-131. doi:https://doi.org/10.1016/j.exger.2018.12.005.

[59]Chen D., Yang X., Yang J., et al. Prebiotic Effect of Fructooligosaccharides from Morinda officinalis on Alzheimer's Disease in Rodent Models by Targeting the Microbiota-Gut-Brain Axis. Frontiers in aging neuroscience. 2017;9: 403. doi:https://doi. org/10.3389/fnagi.2017.00403.

[60]Hazan S. Rapid improvement in Alzheimer's disease symptoms following fecal microbiota transplantation: a case report. Journal of International Medical Research. 2020;48(6): 300060520925930. doi:https:// doi.org/10.1177/0300060520925930.

[61]Sun J., Xu J., Ling Y., et al. Fecal microbiota transplantation alleviated Alzheimer's disease- like pathogenesis in APP/PS1 transgenic mice. Translational psychiatry. 2019;9(1): 1-13. doi:https:// doi.org/10.1038/s41398-019-0525-3.

[62]Vendrik K.E., Ooijevaar R.E., De Jong P.R., et al. Fecal Microbiota Transplantation in Neurological Disorders. Frontiers in cellular and infection microbiology. 2020;10: 98. doi:https://doi.org/10.338 9/fcimb.2020.00098.

[63]Yulug B., Hanoglu L., Ozansoy M., et al. Therapeutic role of rifampicin in Alzheimer's disease. Psychiatry and Clinical Neurosciences. 2018;72(3): 152-159. doi:https://doi.org/10.1111/pcn.12637.

[64]Budni J., L. Garcez M., Medeiros J.D., et al. The Anti-Inflammatory Role of Minocycline in Alzheimer's Disease. Current Alzheimer Research. 2016;13(12): 1319-1329. Available from:http://www.ingentaconnect.com/content/ben/ car/2016/00000013/00000012/art00003#expand/ collapse.

[65]Wang C., Yu J.T., Miao D., et al. Targeting the mTOR signaling network for Alzheimer's disease therapy. Molecular Neurobiology. 2014;49(1): 120-135. doi:https://doi.org/10.1007/s12035-013-8505-8.

[66]Portero-Tresserra M., Martí-Nicolovius M., Tarrés-Gatius M., et al. Intra-hippocampal D-cycloserine rescues decreased social memory, spatial learning reversal, and synaptophysin levels in aged rats. Psychopharmacology. 2018;235(5): 1463-1477. doi:https://doi.org/10.1007/s00213-018-4858-z.

[67]Tsai G.E., Falk W.E., Gunther J., et al. Improved cognition in Alzheimer's disease with short-term D-cycloserine treatment. American journal of Psychiatry. 1999;156(3): 467-469. doi:https://doi. org/10.1176/ajp.156.3.467.

[68]Loeb M.B., Molloy D.W., Smieja M., et al. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer's disease. Journal of the American Geriatrics Society. 2004; 52(3): 381-387. doi:https://doi.org/10.1111/j.1532- 5415.2004.52109.x.

[69]Molloy D.W., Standish T.I., Zhou Q., et al. A multicenter, blinded, randomized, factorial controlled trial of doxycycline and rifampin for treatment of Alzheimer's disease: the DARAD trial. International journal of geriatric psychiatry. 2013;28(5): 463-470. doi:https://doi.org/10.1002/gps.3846.

[70]Kountouras J., Boziki M., Gavalas E., et al. Eradication of Helicobacter pylori may be beneficial in the management of Alzheimer's disease. Journal of neurology. 2009;256(5): 758-767. doi:https://doi. org/10.1007/s00415-009-5011-z.

[71]Richardson A., Galvan V., Lin A.L., et al. How longevity research can lead to therapies for Alzheimer's disease: The rapamycin story. Experimental gerontology. 2015;68: 51-58. doi:https://doi.org/10.1016/j.exger.2014.12.002.

[72]Minter M.R., Zhang C., Leone V., et al. Antibiotic- induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Scientific reports. 2016;6(1): 1-12. doi:https://doi.org/10.1038/ srep30028.

[73]Neufeld N.H., Mohamed N.S., Grujich N., et al. Acute Neuropsychiatric Symptoms Associated With Antibiotic Treatment of Helicobacter Pylori Infections: A Review. Journal of Psychiatric Practice. 2017;23(1): 25-35. doi:https://doi.org/10.1097/ PRA.0000000000000205.

[74]Zarrinpar A., Chaix A., Xu Z.Z., et al. Antibiotic- induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nature communications. 2018;9(1): 1-13. doi:https://doi.org/10.1038/s41467-018-05336- 9.

[75]Wang T., Hu X., Liang S., et al. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Beneficial microbes. 2015;6(5): 707-717. doi:https:// doi.org/10.3920/BM2014.0177.

[76]Neufeld K.M., Kang N., Bienenstock J., et al. Reduced anxiety-like behavior and central neurochemical change in germ- free mice. Neurogastroenterology & Motility. 2011;23(3): 255-264. doi:https://doi.org/10.1111/j.1365- 2982.2010.01620.x.

[77]Bercik P., Denou E., Collins J., et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011;141(2): 599-609. doi:https:// doi.org/10.1053/j.gastro.2011.04.052.

[78]Fröhlich E.E., Farzi A., Mayerhofer R., et al. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain, Behavior, and Immunity. 2016;56: 140-155. doi:https://doi.org/10.1016/ j.bbi.2016.02.020.

[79]Ravelli K.G., Rosário B.D., Camarini R., et al. Intracerebroventricular Streptozotocin as a Model of Alzheimer's Disease: Neurochemical and Behavioral Characterization in Mice. Neurotoxicity research. 2017;31(3): 327-333. doi:https://doi.org/10.1007/ s12640-016-9684-7.

[80]Itzhaki R.F. Herpes simplex virus type 1 and Alzheimer's disease: possible mechanisms and signposts. The FASEB Journal. 2017;31(8): 3216- 3226. doi:https://doi.org/10.1096/fj.201700360.

[81]Barnes L.L., Capuano A.W., Aiello A.E., et al. Cytomegalovirus infection and risk of Alzheimer disease in older black and white individuals. The Journal of infectious diseases. 2015;211(2): 230-237. doi:https://doi.org/10.1093/infdis/jiu437.

[82]Walker J.M., Harrison F.E. Shared Neuropathological Characteristics of Obesity, Type 2 Diabetes and Alzheimer's Disease: Impacts on Cognitive Decline. Nutrients. 2015;7(9): 7332-7357. doi:https://doi. org/10.3390/nu7095341.

[83]Davari S., Talaei S.A., Alaei H. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience. 2013;240: 287-296. doi:https:// doi.org/10.1016/j.neuroscience.2013.02.055.

[84]Claesson M.J., Jeffery I.B., Conde S., et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410): 178-184. doi:https://doi.org/10.1038/nature11319.

[85]Fontana L., Partridge L., Longo V.D. Extending healthy life span--from yeast to humans. Science. 2010;328(5976): 321-326. doi:https://doi. org/10.1126/science.1172539.

[86]Schafer M.J., Dolgalev I., Alldred M.J., et al. Calorie Restriction Suppresses Age-Dependent Hippocampal Transcriptional Signatures. PLoS One. 2015;10(7): e0133923. doi:https://doi.org/10.1371/journal. pone.0133923.

[87]Schafer M.J., Alldred M.J., Lee S.H., et al. Reduction of beta-amyloid and gamma-secretase by calorie restriction in female Tg2576 mice. Neurobiology of Aging. 2015;36(3): 1293-1302. doi:https://doi. org/10.1016/j.neurobiolaging.2014.10.043.

[88]Zhang C., Li S., Yang L., et al. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nature communications. 2013;4(1): 1-10. doi:https:// doi.org/10.1038/ncomms3163.

[89]Hoarau G., Mukherjee P.K., Gower-Rousseau C., et al. Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn's Disease. MBio. 2016;7(5): e01250-16. doi:https://doi. org/10.1128/mBio.01250-16.

[90]Sokol H., Leducq V., Aschard H., et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66(6): 1039-1048. doi:http://dx.doi.org/10.1136/gutjnl-2015-310746.

[91]Frykman P.K., Nordenskjöld A., Kawaguchi A., et al. Characterization of Bacterial and Fungal Microbiome in Children with Hirschsprung Disease with and without a History of Enterocolitis: A Multicenter Study. PLoS One. 2015;10(4): e0124172. doi:https://doi.org/10.1371/journal.pone.0124172.

[92]Iliev I.D., Funari V.A., Taylor K.D., et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012; 336(6086): 1314-1317. doi:https://doi.org/10.1126/ science.1221789.

[93]Luan C., Xie L., Yang X., et al. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Scientific reports. 2015;5(1): 1-9. doi:https://doi.org/10.1038/srep07980.

[94]van der Velden W.J., Netea M.G., de Haan A.F., et al. Role of the mycobiome in human acute graftversus-host disease. Biology of Blood and Marrow Transplantation. 2013;19(2): 329-332. doi:https:// doi.org/10.1016/j.bbmt.2012.11.008.

[95]Lemoinne S., Kemgang A., Belkacem K.B., et al. Fungi participate in the dysbiosis of gut microbiota in patients with primary sclerosing cholangitis. Gut. 2020;69(1): 92-102. doi:http://dx.doi.org/10.1136/ gutjnl-2018-317791.

[96]Sharma A., Laxman B., Naureckas E.T., et al. Associations between fungal and bacterial microbiota of airways and asthma endotypes. Journal of Allergy and Clinical immunology. 2019;144(5): 1214-1227. doi:https://doi.org/10.1016/j.jaci.2019.06.025.

[97]Chen Y., Chen Z., Guo R., et al. Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagnostic microbiology and infectious disease. 2011;70(4): 492-498. doi:https://doi.org/10.1016/j.diagmicrobio.2010.04.005.

[98]Saji N., Murotani K., Hisada T., et al. The relationship between the gut microbiome and mild cognitive impairment in patients without dementia: a crosssectional study conducted in Japan. Scientific reports. 2019;9(1): 1-10. doi:https://doi.org/10.1038/s41598-019-55851-y.

How to Cite

Zhiwei Ye, Ruohu Li, Chenyang Wang, and Wenjing Zhao. “The Mechanism of the Gut Microbiota Affecting the Development of Alzheimer’s Disease and Expectations on Therapeutic Methods”. Advances in Translational Medicine, vol. 1, no. 1, Nov. 2022, pp. 45-60, doi:10.55976/atm.12022112045-60.
X

Scan QR code to follow us by Wechat

扫码关注我们的微信公众号

Luminescience press is based in Hong Kong with offices in Wuhan and Xi'an, China.

E-mail: publisher@luminescience.cn

鄂公网安备 42018502004928号 网站备案号:鄂ICP备2020021880号-1 Copyright © 2021 Luminescience Press. All rights reserved.